

Climate or land use change – identification of future main factor influencing water management. Narew River Basin (NRB) case study

M. Piniewski, T. Okruszko, M. Giełczewski, M. Stelmaszczyk

Warsaw Univeristy of Life Sciences, WULS-SGGW Department of Hydraulic Engineering Poland

CASEE Conference. Szent Istvan University, Gödöllő, Hungary, 28-29 April 2011

Outline

- Background & Objective
- Hydrological model SWAT
- Development of land use change scenarios in the SCENES project
- Climate change scenarios
- Scenario impact on hydrological indicators
- Conclusions & Outlook

Objective

- To investigate the effect of climate and land use change on various hydrological indicators in a large semi-natural river basin
- Tools & Methods:
 - Hydrological model SWAT
 - Land use change scenarios elaborated within a framework actively involving stakeholders
 - >GCM-based climate change scenarios

Background – SCENES project

 EU-FP6 IP SCENES "Water Scenarios for Europe and for Neighbouring States"

- Nov 2006 Apr 2011
- 23 partners from 17 countries
- Similar methodology applied at three levels: pan-European, regional and local (pilot areas)

SWAT model – main features

Soil & Water SWAT

- River basin scale model consisiting of hydrological and water quality components
- Distributed, physically-based, continuous time model coupled with GIS
- Its main purpose is to quantify the impact of land management practices in large, complex river basins

Modelling approach in SWAT

- HRUs unique in terms of land cover, soils and slopes
- Vertical water balance at HRU level => runoff generation at sub-basin level => routing through the stream network to the main outlet

SWAT in SCENES

- In SCENES project SWAT has been applied in the NRB in order to elaborate long term quantitative water scenarios
- Pros: popularity, free of charge, water quantity and quality in one modelling system
- Specification of inputs using readily available data
- Calibration & validation of the hydrological component for the period 2001-08 with daily time step
- Recalibration for the climate normal (baseline period) 1976-2000
- Water quality modelling ongoing

Results: calibration plots

- Mean Nash-Sutcliffe Efficiency (NSE) for 11 calibration gauges
 Calibration period: 0.68
 - Validation period: 0.57

Results: spatial validation

- Scenario development workshops: 4 workshops organized in the NRB during 2008-2011
- **Five steps**: 1. Characterising present and near future; 2. Developing future visions; 3. Critical review of developed visions; 4. Backcasting; 5. Quantification for modelling purposes
- Stakeholder participation: more than 40 people representing various sectors
- Combination of different methods: all involving stakeholders

Scenario development methods

Main drivers and their importance

Driver	2008	2025
C1; Flood protection	4,9	4,7
C2; Water quality in lakes	6,4	7,4
C3; Water-sewage management	8,4	7,9
C4; Nature valuable areas	7,4	8,4
C5; Spatial planning	6,9	8,3
C6; Land amelioration systems	6,4	4,8
C7; Impact of agriculture on water status	7,8	6,9
C8; Agriculture	5,3	6,9
C9; Tourism	6,1	8,1
C10; Role of forest	5,3	6,2
C11; Transboundary co- operation	4,4	5,4
C12; Water retention	7,3	7,1

Giełczewski et al. Journal of Water and Climate Change, 2011

Storylines for selected scenarios

Sustainability First

- Most plausible and desirable scenario
- Agriculture and food industry as main sector – small scale ecological farms
- Importance of environmental policies

Markets First

- Not likely to happen, requiring a push by an external factor to go this direction
- Agriculture and food industry as main sector – intensive, profit-oriented
- Liberalisation of environmental policies

- Objective: translation of qualitative visions (SF & MF) into model scenarios
- Best judgement by experts not reproducible and not transparent
- Adaptation of the method proposed by Alcamo (2008) – a 3-step protocol for converting qualitative into quantitative knowledge
 - Specifying qualitative trends of driving forces
 - Developing a translation key
 - Computing numerical trends of driving forces to use them as model input

Driving forces

- 11 questions asked to stakeholders focused on the future changes in:
- (1) land use (especially agricultural and built-up areas)
- (2) amount of fertilisers applied in agriculture
- (3) percent of **irrigated grasslands** and **drained arable** land
- (4) amount and treatment level of **municipal and industrial wastewater**
- Two scenarios (SF & MF) and two time horizons (2025 & 2050)
- NRB divided into 4 sub-basins to account for spatial variability of drivers

Quantification of drivers – forested areas

Scenario Qualitative Question: What will changes SF MF be the future 2025 2050 2025 2050 change in forested **Upper Narew** ++0 - areas? Region Biebrza + 0 -Masurian Lakes 0 + _ _ - -Lower Narew 0 + **Numerical trends** Upper Narew quantification 300 (10³ ha) 250 200 150 Area 100 e.g. a small increase in forested area 50 is from 5 to 10% (in 25 years) 0 2025 2050 2000

Quantification of drivers – built-up areas

Question: What will be the future change in **built-up areas**?

	Qualitative	Scenario			
	changes	SF		MF	
		2025	2050	2025	2050
	Upper Narew	+ +	+	+++	+
lon	Biebrza	+ +	+	++	+
Yeg	Masurian Lakes	++	+	++	+
	Lower Narew	+ +	+	+++	+ +

Numerical trends

Quantification of drivers – grasslands

Question: What will be the change in percent of agricultural area used as grasslands?

	Qualitative	Scenario			
	changes	SF		MF	
		2025	2050	2025	2050
	Upper Narew	+++	++	0	-
	Biebrza	+++	++	0	-
202	Masurian Lakes	+++	++	0	-
	Lower Narew	+++	+	0	

quantification

Numerical trends

Land use type	SF	MF
Forests	Small increase	Large decrease
Built-up	Medium increase	Large increase
Grasslands	Large increase	Small decrease

- Small spatial variability within scenarios
- Next step: making simulation runs in SWAT

Climate change scenarios

- Two GCMs used
 - ➢ IPSL-CM4, France
 - ≻ MIROC3.2, Japan
- Each coupled with the A2 SRES emission scenario (choice made by SCENES stakeholders)
- Delta change approach applied for bias correction
 Difference between future (2040-2069) and reference (1976-2000) climate
- Variables: temperature and precipitation (not C0₂ levels)
- Acknowledgements to CESR Kassel

Projections for 2050s (basin-averaged)

Changes in annual runoff, Q10 & Q90

Conclusions & Outlook

- SWAT model works in the NRB (scale issue)
- An approach of converting qualitative into quantitative scenarios (e.g. of land use change) tested
- Considerable impact of climate change
- Large climate modelling uncertainty (in this region)
- Impact on environmental flows?

Central Eastern European SWAT Workshop Introductory & Advanced

Date: 27 June to 1 July 2011

WULS-SGGW Water Centre

Warsaw, Poland

WORKSHOP INFORMATION

Introductory and Advanced SWAT Workshops will be led by Dr. Raghavan Srinivasan, Texas A&M, USA.

Introductory SWAT:Standard: 300 €Student: 150 €Advanced SWAT:Standard: 200 €Student: 100 €

For more information please contact Jaroslaw Chormański (j.chormanski@levis.sggw.pl)

Dr. Jarosław Chormański (WULS-SGGW, Poland) M.Sc. Mikołaj Piniewski (WULS-SGGW, Poland) Dr. Raghavan Srinivasan (Texas A&M, USA)

mpiniewski@levis.sggw.pl

ORGANIZING COMMITTEE

Thank you!

CASEE Conference. Szent Istvan University, Gödöllő, Hungary, 28-29 April 2011