Automated versus manual steering during grassland harvest operations in Western Austria

University of Natural Resources and Life Sciences, Vienna

Department for Sustainable Agriculture Systems

Institute of Agricultural Engineering

Iris Kral, Gerhard Piringer, Norbert Barta, Andreas Gronauer, Alexander Bauer

Introduction Automated steering systems

Potential benefits of automated steering systems in agriculture:

- more efficient cultivation processes through:
 - less track-to-track overlap (e.g. tedding)
 - wider headland turns by skipping neighboring tracks
 - less driver fatigue
 - Field work possible even with poor visibility

Practice trials on cropland (Landerl, 2009):

- less track-to-track overlap with automated systems
- reduced labour and fuel requirements
- return on investment for cropland cultivation
 70 ha -1013 ha

Introduction BOK Automated steering systems \bigcirc

Factors driving the comparative performance of automated steering systems

On intensively managed grassland in Western Austria:

- compare automated and manual steering...
- ...with regard to the parameters:
 - operating time (labour)
 - fuel consumption
 - wheel-based speed
 - track-to-track overlap
- Infor the harvesting operations:
 - mowing
 - ➤ tedding
 - swathing

Experimental site:

- Rhine-river valley in western Austria
- Five-cut permanent grassland on dairy farm
- Six equally-sized rectangular plots, 0.79 ha each
- 3 plots (P1, P3, P6) automatically steered – straight parts only, headland turns manual
- 3 plots (P2, P4, P5) manually steered – pattern chosen by driver

Hardware:

- Mowing:
 - 96-kW tractor (Steyr "4130 Profi") with "S-guide" RTK automated steering system
 - Front drum mower and rear disc mower (combined 6.1m) by Poettinger
- Tedding and swathing:
 - 84-kW tractor (Steyr "4115 Multi") with Trimble XCN 2050 RTK system
 - Six-rotor tedder (6.2m) and single-rotor swather (3.3m) by Poettinger

Experimental features:

- Automated steering along straight, pre-programmed "multi-swath" tracks : Farm Works software
- CAN Bus data acquired with Vector GL-3000 data logger
- headland turns were separated from straight track sections
- Statistical analyses with SAS software, one-factor ANOVA with Student-Newman-Keuls post-hoc test; significance level of p= 0.05

Preliminary Results Whole plot efficiency I

- Mowing and tedding: automated steering requires significantly more time and (significantly for mowing) more fuel
- Swathing: automated steering requires significantly less time and insignificantly less fuel

	Mowing		Tedding		Swathing	
	aL	mL	aL	mL	aL	mL
Average Operating Time [min]	15.28±3.01 a	10.72±0.41 a	11.14±0.73 c	8.57±0.50 d	22.60±2.23 e	26.76±1.26 f
Average Fuel Consumption [l/hr]	4.32±0.41 a	3.61±0.23 b	1.15±0.04 c	0.96±0.08 c	2.46±0.23 d	2.63±0.03 d

letters a,b,c,... indicate significant differences between automatic and manual steering (one-way ANOVA, p= 0.05)

Preliminary Results Whole plot efficiency II

Effect of path shape – example mowing:

- automated driving: pre-planned driving pattern included a wider headland (more passes), skipped only one track (also: software problems - trackfinding)
- manual driving: driving pattern skipped multiple tracks, allowing for faster headland turns

Preliminary Results Whole plot efficiency I

Effect of Headland turn shape - example swathing:

Preliminary Results Whole plot efficiency II

Effect of Headland turn shape – example swathing:

- manual driving: narrow swather (3.3 m) requires reversing headland turns.
- automated driving: pre-planned path allowed skipped tracks -> more efficient turns.

both mowing and swathing can reduce overlap

	Mowing		Swathing		
	Autom.	Manual	Autom.	Manual	
Nominal working width [m]	6.09		4.20		
Toolbar width [m]	5.70		3.30		
Effective toolbar width [m]	5.52	5.21	3.30	3.15	
"Straight line" field efficiency ¹ [%]	96.80	91.33	100	95.55	

1) Price (2011): Typical overlap settings for RTK in cropland: 8-10 cm. Here: Mowing: 18 cm, swathing: 0 cm

automated mowing and tedding less efficient than manual mowing -

- more efficient manual driving patterns
- problems locking into next track
- automated swathing more efficient than manual swathing
 - narrow swather width requires reversing headland turns with manual steering, but automated steering can skip tracks
- efficiency gains through reduced trackto-track overlap (mowing and swathing)

University of Natural Resources and Life Sciences, Vienna

Department for Sustainable Agriculture Systems

Institute of Agricultural Engineering

Thank you for your attention!

Iris Kral, Gerhard Piringer, Marie Mauch, Norbert Barta, Andreas Gronauer, Alexander Bauer

Peter Jordan Strasse 82, A-1190 Wien Iris.Kral@boku.ac.at , www.boku.ac.at/ilt

Funding and support by:

