

HOPLANTEL

University of Novi Sad Faculty of Agriculture Novi Sad, Department for animal science

EFFECT OF USING A BROILER DIET WITH DIFFERENT LEVELS OF KTI FREE SOYBEAN TO RETENTION OF NITROGEN

Dejan BEUKOVIĆ, Miloš BEUKOVIĆ, Dragan GLAMOČIĆ, Dragana LJUBOJEVIĆ, Niko MILOŠEVIĆ, Nikola PUVAČA Siniša BJEDOV

Soybean

- The main source of protein
- The highest quality protein
- Meets the needs of all essential amino acids
- Very rich in lysine 3.00 to 3.26%
- Methionine and cysteine the limiting amino acid
- The high content of unsaturated oils 18 20%

Anti-nutritive substances

- Trypsin inhibitor to inhibit the function of the digestive proteolytic enzymes trypsin and chymotrypsin;
- Lectine, -Reduces absorption of nutrients;
- Urease, the conversion of urea to ammonia
- Lipoxidase enzyme catalyzed oxidation of lipids

• Trypsin inhibitor

• Kunitz Trypsin Inhibitor - KTI

• Bowman-Birk Trypsin Inhibitor - BTI

Methods of inactivation of anti-nutritional thermolabile factors

- cooking and autoclaving
- micronisation
- extrusion
- expansion
- toasting,
- roasting

- Applying the method of selection in creating new KTI free varieties, which avoiding the application of processing - heat treatment.
- This type varieties of soybeans (KTI free) have been studied over the past 20 years.
- Pioneer of this venture was Hymowitz (1986) developed a KTI free soybean.

Soybean, variety "Lana" - which was used in this experimentm, is the result of a domestic (Serbian) research program selection, at a reduced presence of Kunitz trypsin inhibitor in soybean.

Table 1. Level of TI in soybean used in researched

	RAW			
	"LANA"	Convetional Soybean		
TI (mg/g/min)	15,07	30,21		

KTI – free soybean benefit

- Eliminating the cost of processing soybeans, which greatly burdened price of production.
- The release of small and medium farmers of the manufacturing monopoly

However caution is necessary beacause KTI is one of main, but not only heat-labile antinutritive factor in raw soybean.

Inhibition of trypsin

Materials and Methods

Birds in experiment

- Hybrids Ross-308, 64 Males only,
- initial weight of chickens was constant (42.5)
- Metabolic cage
- The experiment included four groups of four replications.
- Food and water were available ad libitum, with a lighting regimen of 24 hours.

- In the experiment, we examined the retention of nitrogen by two different methods:
 - 1. Direct method,
 - 2. Marker method

• Direct method,

-requires accurate measurement of feed consumption and feces colection during the collection period.

-involves the analytical determination ,and calculation of the nitrogen content in the feed and feces.

-This is the hard way because the end results much depending of measurement accuracy of consumed feed and feces excretion.

• Marker method,

-Requires a homogeneous mixture of marker and feeds,

-Marker must be stable during passage through the digestive tract of animals

-Requires a preliminary period of feeding diet with marker, before the start of the collection period (cleaning up the digestive tract of remaining feed without the marker)

-Analytical determination ,and calculation of the nitrogen content in the feed and feces,

- Analytical determination of marker level in the feed and in the feces, (AIA – methode).

-Results should be put in relation to calculate retention.

- Preparation period 28 day (cage adaptation)
- 33 day start consumation ("cleaningdigestive tract from the remnants of food that did not contain marker)
- 36 day period of collection (3 days)

 Earlier research indicates that young categories of animals, who use raw KTI free and lectine free soybeans have a high intolerance to heat untreated soybeans (Palacios et al., 2004;

LG - group

Tretman groups

Nutrition in the experiment

Table 2. Chemical composition of starter mixture, %

Chemical composition of starter mixture				
DM (%)	89,71			
ME	12,60			
SP (%)	23,00			
Lys. (%)	1,52			
Meth. (%)	0,60			
Thre. (%)	0,91			
Ca (%)	1,00			
P (%)	0,80			
Na (%)	0,16			
Cl (%)	0,23			

Table 3. Structure composition of diet used in grower mixture, %

			Conventional level of				
Ingredients	KTI-free		KTI				
	Raw		Extruded	Raw		Extru	ded
	(SL)		(LG)	(SS)		(SG)	
Maze (%)		49,87	49,95		53,65		53,35
Soybean meal (%)		12,03	11,95		8,22		8,52
Raw Soybean KTI-free (%)		30	-	-		-	
Soybean KTI-free extruded (%)	-		30	-		-	
Raw Soybean conventional level of KTI (%)	-		-		30	-	
Soybean conventional level of KTI							
extruded (%)	-		-	-			30
Yeast (%)		4	4		4		4
Chalk (%)		1,4	1,4		1,4		1,4
MCP (%)		1,35	1,35		1,37		1,37
Salt (%)		0,35	0,36		0,35		0,36
Premix (%)		1	1		1		1
Tottal		100	100		100		100

Table 4. Chemical composition of grower mixture, %

Nutrients	SL	SS	LG	SG
DM (%)	90,43	90,43	89,83	89,83
ME (MJ)	13,36 MJ	13,49 MJ	13,36 MJ	13,48 MJ
SP (%)	22,00	22,00	22,00	22,00
Lys. (%)	1,59	1,48	1,49	1,49
Meth. (%)	0,61	0,59	0,59	0,59
Thre. (%)	0,96	0,89	0,91	0,92
Ca (%)	0,91	0,90	0,91	0,90
P (%)	0,77	0,76	0,77	0,76
Na (%)	0,16	0,16	0,16	0,16
Cl (%)	0,25	0,25	0,23	0,23

Table 5. Structure composition of diet used in finisher mixture, %

			Conventional level of		
Ingredients	KTI-free		КТІ		
	Raw	Extruded	Raw	Extruded	
	(SL)	(LG)	(SS)	(SG)	
Maze (%)	51,71	51,82	55,56	54,36	
Soybean meal (%)	9,16	9,08	5,32	6,54	
Raw Soybean KTI-free (%)	30	-	-	-	
Soybean KTI-free extruded (%)	-	30	-	-	
Raw Soybean conventional level of KTI (%)	-	-	30	-	
Soybean conventional level of KTI extruded					
(%)	-	-	-	30	
Yeast (%)	4	4	4	4	
Chalk (%)	1,4	1,4	1,4	1,4	
MCP (%)	1,38	1,35	1,35	1,35	
Salt (%)	0,35	0,35	0,37	0,35	
Premix (%)	1	1	1	1	
Celite [®] 545 - marker	1	1	1	1	
Tottal	100	100	100	100	

Table 6. Chemical composition of finisher mixture, %

Nutrients	SL	SS	LG	SG
DM (%)	90,43 %	90,43 %	89,83 %	89,83 %
ME (MJ)	13,46 MJ	13,60 MJ	13,47 MJ	13,56 MJ
SP (%)	21,00 %	21,00 %	21,00 %	21,00 %
Lys. (%)	1,52 %	1,41 %	1,42 %	1,44 %
Meth. (%)	0,60 %	0,58 %	0,58 %	0,58 %
Thre. (%)	0,92%	0,85 %	0,87 %	0,89 %
Ca (%)	0,90 %	0,89 %	0,90 %	0,89 %
P (%)	0,76 %	0,74 %	0,76 %	0,75 %
Na (%)	0,16 %	0,16 %	0,16 %	0,16 %
Cl (%)	0,25 %	0,25 %	0,23 %	0,23 %

Results

Table 7. Retention of nitrogen in diet for broilers with different levels of KTI free soybean, %

	SL	SS	LG	SG
	48	48	57	60
	50	46	59	56
Retention of nitrogen-	52	46	51	56
marker method (%)	43	48	55	57
$ar{x}$	48 ^a	39 ^a	55 ^b	57 ^b
Std.dev	±3,9	±1,2	±3,5	±1,9
Retention of nitrogen – method total colection (%)	54	51	64	69
	49	39	66	63
	48	43	58	62
	51	52	60	65
x	51 ^a	46 ^a	62 ^b	65 ^b
Std.dev	±2,5	±6,3	±3,9	±2,9

a-b, - letter in super script by columns indicates to significant differences, (p<0,01). a-a, b-b - letter in super script by columns indicates to no significant differences, (p>0,05)

Nitrogen retention - marker method
Nitrogen retention - method total collecton

Chart 2 Retention of nitrogen in diet for broilers with different levels of KTI free soybean .

Conclusion

- The absence of heat treatment had a significant effect to nitrogen retention.
- SG and LG Group (heat-treated) had significantly better retention of nitrogen, no matter whether it comes directly or maker method

- SL group, had better retention than, SL group but not statistically significant
- Therefore, it can be finally concluded that usage of whole (raw) soybean KTI-free, variety "Lana" is not suitable from the standpoint of nitrogen retention, for the chicken nutrition from 11th day at a concentration of 30% in diet.

Notification

 This is a research was basis for the setting up of new experiments and research, in determination level of use, heat untreated soybean variety "Lana" in diet for broilers.

ACKOWLEDGEMENT

 This paper is part of the project TR-31033 which is financially supported by the Ministry of Science and Technological development of Republic of Serbia.

THANKS FOR YOUR ATTENTION

