

DETERMINATION OF FATTY ACID PROFILE AND EFFECT OF MIXOTROPHIC GROWTH IN SELECTED CYANOBACTERIAL STRAINS

Dajana J. Kovač¹, Olivera B. Babić¹, Jelica B. Simeunović¹, Ivan Lj. Milovanović², Aleksandra Č. Mišan²

¹University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, Novi Sad, Serbia ²University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, Novi Sad, Serbia

5th CASEE Conference "Healthy Food Production and Environmental Preservation – The Role of Agriculture, Forestry and Applied Biology"

May 25 - 27, 2014, Novi Sad, Serbia

Microalgae

- Photosynthetic microorganisms with the vast potential in the production of food, feed and high-value metabolites
- Cyanobacteria (blue-green algae) are particularly recognized as health food, as well as producers of different bioactive compounds

- Fatty acids of the microalgae origin are nowadays available on the market
- Algae are thought to be the principal producers of some polyunsaturated fatty acids (PUFAs) in the biosphere - although marine fish is the principal dietary source of some PUFAs, they are actually synthesized by microalgae and fish receive them via food chain

- Microalgae are usually cultivated in photoautotrophic cultures and their commercial application is limited by the low biomass yield and high production costs
- Using mixotrophic mode of nutrition:
 - 1) during the night culture may continue to grow through heterotrophic nutrition
 - 2) lower light intensity is required
- It is expected that mixotrophic cultivation is especially suitable for the production of high value bioactive compounds, fine chemicals and pharmaceuticals

- Filamentous, nitrogen-fixing cyanobacteria can be an excellent biotechnological source because:
 - they do not need nitrogen in the culture medium
 - 2) filamentous nature facilitates the process of biomass harvesting
- Some species of the Anabaena and Nostoc genera are used in human nutrition

Nostoc commune - a potential dietary fibre source

Nostoc flagelliforme - a species with high economic value, used in nutrition for more than 2000 years, with reported anti-tumor and anti-viral activity

The aim

 The aim of this study was to investigate the fatty acid profile and effect of mixotrophic nutrition with glucose in selected filamentous, nitrogen-fixing cyanobacterial strains, belonging to the Nostoc and Anabaena genera.

MATERIALS AND METHODS

Tested strains:

Anabaena LC₁B

Nostoc 2S₃B

Nostoc S_8

Nostoc 2S₁

- The analyses of fatty acid methyl esters (FAMES) were carried out by gas chromatography coupled with flame ionization detection (GC-FID)
- Biomass production in mixotrophic conditions was determined at two concentrations of glucose, 1.5 and 3 g/l
- It was determined every seven days, by spectrophotometrically measuring of the chlorophyll a concentration, and it was calculated using an indirect method (Mckinney, 1941):

The concentration of chlorophyll a was calculated using the following formula:

$$cc Chl a = \frac{A_{663} \times 12,64 \times V_1}{V_2} \left[\frac{\mu g}{ml} \right]$$

Biomass production was calculated using the following formula:

$$B = ccChl \ a \times 67 \left[\frac{mg}{ml} \right]$$

Fatty acid composition (% m/m) of tested cyanobacterial strains:

Fatty acid	Anabaena LC ₁ B	Nostoc S ₈	Nostoc 2S ₃ B	Nostoc 2S ₁
	%	%	%	%
6: 0	0,00	20,75	0,00	2,21
14: 0	0,54	0,66	0,66	0,68
14: 1	0,00	0,49	0,00	0,47
16: 0	21,57	12,23	15,94	18,29
16: 1	26,45	31,63	24,83	36,75
18: 0	0,80	0,47	3,11	0,70
18: 1n9c	13,22 ★	3,91	11,26	4,60
18: 2n6c	19,59 🔶	16,00	20,09 🔶	15,64
1 8: 3n3	17,82	13,85	24,10 🔶	20,13
22: 1n9	0,00	0,00	0,00	0,53
SFA	22,90	34,11	19,72	21,88
MUFA	39,68	36,04	36,09	42,35
PUFA	37,42	29,86	44,19	35,77
UFA	77,10	65,89	80,28	78,12

SFA - saturated fatty acids, MUFA - monounsaturated fatty acids, PUFA - polyunsaturated fatty acids, UFA - unsaturated fatty acids

Biomass production in mixotrophyc cultures:

Biomass production in strain Anabaena LC₁B

Biomass production in strain Nostoc 2S₁

Biomass production in strain Nostoc S₈

Biomass production in strain Nostoc 2S₃B

In graphs x axis represents time period expressed in days, while y axis represents biomass production in g/l

CONCLUSIONS

- Strains which were tested in the present study showed ability to produce important fatty acids, as well as significant biomass increase in mixotrophic cultivation conditions;
- The highest proportion of oleic acid (18:1n9c) was found in the strain *Anabaena* LC₁B, linoleic acid (18:2n6c) in the strains *Anabaena* LC₁B and *Nostoc* 2S₃B, and α-linolenic acid (18:3n3) in the strain Nostoc 2S₃B;
- Taking into account the highest PUFAs content, as well as the highest biomass production, strain *Nostoc* $2S_3B$ has the greatest biotechnological potential;
- Manipulation of the cultivation conditions can affect the biomass production, as well as the target metabolites.

Acknowledgments

 This study has been supported by the funding of the Ministry of Education and Science of the Serbian Government (project number: TR 31029) which is greatly acknowledged

Thank you for your atention