The Soil resources in the Danube Region:

University of Natural Resources and Life Sciences

Department of Forest and Soil Sciences

Opportunities and constraints for Agricultural Production

Leopold Rittler

BOKU - University of Natural Resources and Life Sciences, Vienna

Borůvka L., Czech University of Life Sciences, Prague

Antic-Mladenovic S., University of Belgrade

Bauer T., BOKU - University of Natural Resources and Life Sciences, Vienna

Diacu E., University "Politehnica" of Bucharest

Gerzabek M., BOKU - University of Natural Resources and Life Sciences, Vienna

Licina V., University of Belgrade

Romic D., *University of Zagreb*

Romic M., University of Zagreb

Tlustos P., Czech University of Life Sciences, Prague

Wenzel W., BOKU - University of Natural Resources and Life Sciences, Vienna

My presentation today

- Introduction
- Objectives & Research questions
- Results & Methodology
- Synthesis and conclusions

University of Natural Resources and Life Sciences

Wheat yields in the Danube region:

Objectives and research questions

Analysis of the agricultural production capacity of the Danube region(*) in regard to

the consequences of a sustainable intensification for the soil resources.

University of Natural Resources and Life Sciences Department of Forest and Soil Sciences

*DE, AT, SK, SI, CZ, HU, HR, BIH, SR, RO, BG

Research questions:

Objective:

- 1.) Are there yield gaps for wheat in the Danube region(*)?
- 2.) How can nitrogen fertilisation contribute in a sustainable manner to close the yield gaps of wheat in the Danube region(*)?
- 3.) Which agricultural areas could be identified as sensitive to a higher nitrogen input in the Danube region(*)?

4.) How big would be the contribution of a replacement of fodder crops by direct food production in the Danube region(*)?

Preliminary Results & Methodology I

Wheat yield gaps & Nitrogen gaps in the Danube region

Selection procedure I – country level

University of Natural Resources and Life Sciences

Selection procedure IV – synthesis and selection of NUTS regions

Methodology – Assessing a Nitrogen gap

Selection of climate – soil regions

Compilation of nitrigenous fertilizer use (national sources & UNFCC)

Divided per hectar arable land

Averaged for 2000 – 2012 for 54 NUTS

Subnational yield statistics for wheat

90th percentile of recorded mean yields = "attainable yield"

Simple regression to estimate the N-Fertilizer gap

"Nitrogen gap"

nitrogen gap

Average Wheat yields and Nitrogen application rates (00'-12')

Yield gaps [kg/ha]

Results & Methodology II Potentials of a diet transition

University of Natural Resources and Life Sciences

Methodology – "diet gap"

Fooder crops cultivated per NUTS region

Feeding of Livestock

Feed conversion into kcal (vector: edible kg)

University of Natural Resources and Life Sciences

Department of Forest and Soil Sciences

Chicken

Milk

Pork

Eggs

Beef

Animal

Status quo:

kcal/region

Smil, Nitrogen and food production: proteins for human diets(2002)

Pork

Methodology – "diet gap"

Fooder crops cultivated per NUTS region

Feeding of Livestock

Conversion into vegetarian kcal (vector: kg flour)

University of Natural Resources and Life Sciences

Calorie gap of fodder crops in the Danube region

Calorie gap [10⁶ kcal] = Animal calories from fodder crops (*) – alternative veggie calorie from fodder

Discussion of the results

- → Wide yield gap for wheat within the study area
- Uncertainties:
 - Nitrogen efficiencies of production systems
 - Unconsidered nitrogen inputs (legumes etc.)
 - Selection of NUTS (climate, soils)
 - Accurate & reliable statistical data for fertiziler use

University of Natural Resources and Life Sciences

- → Great potential to feed more people
 - Uncertainties:
 - Conversion rates are just estimators
 - Only few information about distribution pathways

Synthesis

Closing of yield gaps can offer a great potentials to feed more.

University of Natural Resources and Life Sciences Department of Forest and Soil Sciences

→ A full closing of the diet gap is unrealistic but this modelling approach illustrates the "costly" animal production

References of the presentation

CORINE. http://land.copernicus.eu/pan-european/corine-land-cover

- Eurostat: www.ec.europa.eu/eurostat
- Licker, R. et al. (2010): Mind the gap: how do climate and agricultural management explain the stylets gap" of croplands around the world? Glob. Ecol. Biogeogr. 19, 769–782.
- Mueller, N. et al. (2012):Closing yield gaps through nutrient and water management. Nature 490, 254 257.
- Smil, V. Nitrogen and food production: proteins for human diets. AMBIO: A Journal of the Human Environment 31, 126-131 (2002).
- JRC. European Commission- Joint Research Centre Institute of Environment and Sustainability, Ispra
- ICDPR. International Commission for the Protection of the Danube River, icdpr.org
- FAO. Food and Agriculture Organisation of the United Nations. www.fao.org
- Icons for Diet gap: https://cdn2.iconfinder.com/data/icons/bright-cafe/512/maize-512.png
- Fig.1.: Wilder Kaiser: http://www.hdpaperwall.com/bavarian-landscape/
- Fig.2.: Marchfeld: http://www.fotocommunity.de/pc/pc/display/13216374
- Fig.3.: Great Hungarian Plain: http://en.wikipedia.org/wiki/Great_Hungarian_Plain
- Fig.4: Vojvodina: http://onebigphoto.com/category/landscape-photography/page/10/

References of the presentation

- Fig. 5: Danubian Plain in Bulgaria: http://en.wikipedia.org/wiki/Danubian_Plain_(Bulgaria)
- Fig. 6: Wheat field with N-defiency: www.nue.okstate.edu

University of Natural Resources and Life Sciences

Yield gap assessment II

GLUES-project (BMBF): suitability evaluation for winter wheat considering soil, topography, climate, irrigation and crop requirements.

University of Natural Resources and Life Sciences

Methodology - selection of NUTS within the study area

University of Natural Resources and Life Sciences

Department of Forest and Soil Sciences

CORINE (2006) land cover map of Europe; blue = danube basin

Selection procedure II – Soil typs

Map of soil typs according to WRB (ESDB 2.0)

Selection procedure III - precipitation

Average annual precipitation (ICPDR 2004)

Materials

- 1. Institute for Environment and Sustainability, European Commission, ISPRA
 - ESDB 2.0. (1km x1km; interpolated)
 - Soil threats assessments (e.g.: PESERA)
- 2. CORINE land cover (100m x 100m)
- 3. ICPDR*
 - Hydrological characteristics
 - Diffuse pollution by nutrients (→ Eutrophication)
- 4. EUROSTAT, FAOSTAT, IFA, national reports (yields, fertilization,...)
- 5. Yield gap models
 - Closing yield gaps through nutrient and water management (Mueller et al. 2012)
 - Solutions for a cultivated planet (Foley et al. 2011)
- 6. ArcGIS for producing maps

University of Natural Resources and Life Sciences

^{*} International Commission for the Protection of the Danube River

